Control of extracellular dopamine at dendrite and axon terminals.

نویسندگان

  • Christopher P Ford
  • Stephanie C Gantz
  • Paul E M Phillips
  • John T Williams
چکیده

Midbrain dopamine neurons release dopamine from both axons and dendrites. The mechanism underlying release at these different sites has been proposed to differ. This study used electrochemical and electrophysiological methods to compare the time course and calcium dependence of somatodendritic dopamine release in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) to that of axonal dopamine release in the dorsal striatum. The amount of dopamine released in the striatum was approximately 20-fold greater than in cell body regions of the VTA or SNc. However, the calcium dependence and time to peak of the dopamine transients were similar. These results illustrate an unexpected overall similarity in the mechanisms of dopamine release in the striatum and cell body regions. To examine how diffusion regulates the time course of dopamine following release, dextran was added to the extracellular solution to slow diffusion. In the VTA, dextran slowed the rate of rise and fall of the extracellular dopamine transient as measured by fast-scan cyclic voltammetry yet did not alter the kinetics of the dopamine-dependent IPSC. Dextran failed to significantly alter the time course of the rise and fall of the dopamine transient in the striatum, suggesting a more influential role for reuptake in the striatum. The conclusion is that the time course of dopamine within the extracellular space of the VTA is dependent on both diffusion and reuptake, whereas the activation of D(2) receptors on dopamine neurons is primarily limited by reuptake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline, and veratridine.

Previous studies have shown that dopamine, bicuculline, or d-amphetamine reduce the electrical and dye-coupling between the axon terminals of the horizontal cells of the turtle retina (see Piccolino et al., 1984). In the present study we observed similar effects following the application of veratridine. The actions of all these drugs were prevented by dopamine antagonists acting on D1 receptors...

متن کامل

Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons

The site of action potential initiation in substantia nigra neurons was investigated by using simultaneous somatic and dendritic whole-cell recording in brain slices. In many dopamine neurons, action potentials were observed first at the dendritic recording site. Anatomical reconstruction showed that in these neurons, the axon emerged from the dendrite from which the recording had been made. Ac...

متن کامل

Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals.

Repeated administration of cocaine to rodents produces a progressive augmentation in motor activity known as behavioral sensitization. By using microdialysis in the ventral striatum, some studies have found that the development of behavioral sensitization is associated with a similar augmentation in dopamine release, while others have not. It was postulated that differences in doses and withdra...

متن کامل

Target-Induced Transcriptional Control of Dendritic Patterning and Connectivity in Motor Neurons by the ETS Gene Pea3

The apposition of axon terminals and dendrites is critical for the control of neuronal activation, but how distinct neuronal subpopulations establish selective dendrite patterns and acquire specific presynaptic inputs remains unclear. Spinal motor neuron (MN) pools project to specific target muscles and are activated by selective synaptic inputs from group Ia proprioceptive afferents (IaPAs). H...

متن کامل

Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum.

Dopamine (DA) is released from somatodendritic sites of neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), where it has neuromodulatory effects. The aim of this study was to evaluate the role of D2 autoreceptor inhibition in the regulation of this somatodendritic release in each region. Fast cyclic voltammetry at carbon fiber microelectrodes was used to measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 20  شماره 

صفحات  -

تاریخ انتشار 2010